首页> 外文OA文献 >Improving the performance of hyperspectral pushbroom imaging spectrometers for specific science applications
【2h】

Improving the performance of hyperspectral pushbroom imaging spectrometers for specific science applications

机译:针对特定科学应用提高高光谱推扫式成像光谱仪的性能

摘要

Hyperspectral imaging spectrometers offer the unique chance of recording image data of a broad range of targets in the reflected solar energy spectrum. These instruments are designed upon certain requirements such as signal-to-noise ratio (SNR), spectral resolution and bandwidth or noise equivalent delta radiance. These parameters are determined by investigating one or several typical targets (e.g. vegetation, limnology, soil, atmosphere) that the instrument will sense during its operational life by means of specific instrument models.\udDepending on the specific application, users can demand hyperspectral image data that might cover a portion or the whole sensor spectral range and, more importantly, may have requirements different from the ones the instrument was designed for originally.\udTherefore, in order to meet the user requests the spectrometer settings should be modifiable.\udMany instruments are potentially programmable from the electric point of view, in a way that the sensor setting parameters could be changed, e.g. exposure time, on-chip averaging, the so-called binning, amplifier gains. By tuning these parameters the sensor performances can be modified according to the user needs.\udThe Airborne Prism Experiment (APEX)1, a hyperspectral imaging spectrometer developed by a Swiss-Belgium consortium on behalf of the European Space Agency (ESA) and under the scientific supervision of the Remote Sensing Laboratories (RSL), has been designed upon certain requirements (e.g. radiance levels, SNR) but, nevertheless, the electric settings can be changed by means\udof a mission control file in order to fulfil user requests that differ from the default scenario. Namely, the APEX instrument allows changes of exposure time, on-chip binning and frame period.\udWe designed and implemented a software utility that optimizes the instrument parameters based on the possible range of hardware settings and the user application requirements. This utility is based on the detector electrical and optical description, which is modelled in terms of signal and noise by using the SNR equation2. In order to develop such a model the instrument optical\udcharacteristics, i.e. transmission, must be known. The utility can be regarded as an APEX sensor simulator but it can be easily adapted to any other hyperspectral imaging apparatus.\udUsers (i.e. sensor manufacturers, operators, scientists) can formalize their requirements and feed them into the model. E.g. a scientist is aiming at estimating the amount of leaf chlorophyll content within a vegetation target with a required minimum of detectable differences. Therefore he has to identify the needed values of SNR, spectral resolution and sampling interval as an input for the simulator.\udThe utility evaluates all the possible solutions in terms of exposure time and on-chip binning in order to determine the one that matches the scientist needs the best. A broad variety of error deviations are reported in order to help the users in interpreting the simulation results, estimate the error and accuracy budgets accordingly.\udDepending on the input requirements the discordance between the users needs and the results can be significant. In such a case the utility performs a further step by analyzing post-processing strategies, as for instance off-chip binning, in a way that the requirements can be someway be met.\udThe presented utility has a twofold advantage: (1) it allows manufacturers and sensor operators to offer an instrument that is adaptable to needs of the end-users community and (2) it lets users, mainly scientists, understand what can be achieved with a given\udhyperspectral instrument. The weakness of the utility relies on the lack of information about the optical and electrical parameters, which might be caused by the confidential nature of technical details, namely in private companies.\udWe firmly believe that this utility can (a) optimize the programming of hyperspectral imaging spectrometers to gather more accurate image data and (b) let users exploit the broad range of applications that can be investigated with the available large spectral range.
机译:高光谱成像光谱仪提供了在反射的太阳能光谱中记录各种目标图像数据的独特机会。这些仪器是根据某些要求而设计的,例如信噪比(SNR),频谱分辨率和带宽或噪声等效增量辐射。这些参数是通过使用特定的仪器模型研究仪器在其使用寿命期间将要检测到的一个或几个典型目标(例如植被,森林学,土壤,大气)来确定的。\ ud根据特定的应用,用户可以要求高光谱图像数据\ ud因此,为了满足用户的要求,光谱仪的设置应该可以修改。\ ud许多仪器可能会覆盖一部分或整个传感器的光谱范围,更重要的是,可能有与仪器最初设计的要求不同的要求。从电气角度来看,它们可能是可编程的,从而可以更改传感器设置参数,例如曝光时间,片内平均,所谓的合并,放大器增益。通过调整这些参数,可以根据用户需求修改传感器性能。\ ud机载棱镜实验(APEX)1,由瑞士-比利时财团代表欧洲航天局(ESA)开发的高光谱成像光谱仪。已根据某些要求(例如,辐射水平,SNR)设计了遥感实验室(RSL)的科学监督,但是,可以通过任务控制文件的\ ud更改电气设置,以满足用户的不同要求默认情况下。即,APEX仪器允许更改曝光时间,片上装仓和帧周期。\ ud我们设计并实现了一种软件实用程序,可以根据可能的硬件设置范围和用户应用要求来优化仪器参数。该实用程序基于检测器的电气和光学描述,该描述通过使用SNR公式2在信号和噪声方面建模。为了开发这样的模型,必须知道仪器的光学特性,即透射率。该实用程序可以视为APEX传感器模拟器,但可以轻松地应用于任何其他高光谱成像设备。\ ud用户(即传感器制造商,操作员,科学家)可以将其需求形式化,并将其输入模型中。例如。一位科学家的目标是估计植被目标内的叶绿素含量,并要求最小的可检测差异。因此,他必须确定所需的SNR,光谱分辨率和采样间隔值作为模拟器的输入。\ ud该实用程序会根据曝光时间和片上装仓来评估所有可能的解决方案,以确定与之匹配的解决方案。科学家需要最好的。报告了各种各样的误差偏差,以帮助用户解释仿真结果,据此估算误差和准确度预算。\ ud根据输入要求,用户需求和结果之间的不一致可能很明显。在这种情况下,该实用程序通过分析后处理策略(例如片外合并)执行进一步的步骤,从而可以某种方式满足要求。\ ud所提供的实用程序具有双重优势:(1)它具有允许制造商和传感器操作员提供适合最终用户群体需求的仪器,并且(2)它使用户(主要是科学家)了解使用给定的\超光谱仪器可以实现的目标。该实用程序的弱点在于缺少有关光学和电气参数的信息,这可能是由技术细节(即在私人公司中)的机密性质引起的。高光谱成像光谱仪可收集更准确的图像数据;(b)让用户利用可以在大光谱范围内进行研究的广泛应用。

著录项

  • 作者

    Dell'Endice, F;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号